

DLC - DMU - DPU

FLEXIBLE LAMELLENKUPPLUNGEN

INHALTSVERZEICHNIS	
Einleitung	1
Warum Escodisc?	2
Standardausführungen	3
Sonderausführungen	4
Wahl des richtigen Escodisc-Modells	5
Wahl der richtigen Escodisc-Größe	6-7
Escodisc DLC-Baureihe	9
Escodisc DLC-Auswahltabelle	10
Escodisc DLC	11
Escodisc DLCC	12
Escodisc DLFR	13
Escodisc DMU-Baureihe	15
Escodisc DMU-Auswahltabelle	16
Escodisc DMU	. 17 - 18
Escodisc DMUCC	19
Escodisc DMUFR	20
Escodisc DPU-Baureihe	21
Escodisc DPU-Auswahltabelle	22
Escodisc DPUSS	23
DPU-Vergleichstabellet	24
Wellenverbindung	26

Auswuchten der Escodisc-Kupplungen27
Escodisc-Referenzen28

In einer Welt, in der WirkungsGrad, lange Lebensdauer, geringe Wartung und niedrige Folgekosten immer wichtiger werden, sind die Bedeutung einer Kupplung (Verbindung zwischen 2 Maschinen) und ihr Einfluss nicht zu unterschätzen. Aus diesem Grund suchen Konstrukteure und Hersteller rotierender Maschinen nach größeren Drehmomenten, besseren Verlagerungskapazitäten, hervorragender Herstellungsqualität, geringeren Gewichten und erheblichen reduzierten Reaktionskräften.

Lamellenkupplungen bieten dem Anwender eine Vielzahl von Vorteilen: Die Kupplungen sind wartungsfrei. Sie haben sehr geringe Reaktionskräfte im Verlagerungsfall, und aufgrund ihrer äußerst hohen Eigenstabilität verursachen sie keine Vibrationen, die Schäden an den Komponenten, z.B. an Dichtungen, Lagern usw. zur Folge haben könnten.

Um die Reaktionskräfte auf ein absolutes Minimum zu senken, ist es den ESCO-Ingenieuren gelungen, die Konstruktion der Lamellenkupplungen zu optimieren. Auch Phänomene wie Reibkorrosion und Knickverformung, die die Lebensdauer einer Lamellen-kupplung erheblich beeinträchtigen können, wurden eliminiert.

Entwicklung, Tests und Herstellung der Escodisc-Kupplungen haben unbegrenzte Lebensdauer, wartungsfreie Anwendung, geringe Montage-kosten und höheren WirkungsGrad der Maschine zum Ziel.

Modell DLC Drehmoment : bis 1600 Nm Bohrung : bis 105 mm

Modell DMU Drehmoment : bis 260 000 Nm Bohrung : bis 370 mm

Modell DPU Drehmoment : bis 23 100 Nm Bohrung : bis 220 mm

VORTEILE

WARUM ESCODISC?

Hohe Drehmomentleistung und Verlagerungskapazität

Aufgrund der optimierten Lamellenform und -stärke (erreichbar durch finite Elementenmethode und Laserschnitt), der optimalen Schraubenanzahl und der Verwendung der Güteklasse 12.9 haben die Escodisc-Kupplungen ein sehr hohes Drehmoment und eine hohe Verlagerungskapazität in Kombination mit reduzierten Reaktionskräften der angeschlossenen Ausstattung (Lager, mechanische Dichtungen...).

Unbegrenzte Lebensdauer

Alle Escodisc-Kupplungen sind für unbegrenzte Lebensdauer berechnet, ausgelegt und getestet. Dies wird möglich, weil für die Lamellen rostfreier Stahl AlSI 301 mit spezieller Oberflächenbehandlung eingesetzt und zwischen den Lamellen standardmäßig eine Distanzscheibe verwendet wird, die Reibkorrosion ausschließt. Darüber hinaus steckt eine hohe Sicherheitsspanne in den Katalogwerten.

Keine Verformung

Um perfekte Zentrierung des Zwischenstücks bei allen Betriebsbedingungen (sehr wichtig bei Anwendungen mit großen Abständen zwischen den Wellenenden) und kontrollierte Beanspruchung in den Lamellenpaketen zu garantieren, sind die Escodisc-Kupplungen so ausgelegt, dass auch beim Spitzenmoment keine Verformung auftritt. Das Ergebnis ist ein wartungsfreier Betrieb, gepaart mit max.

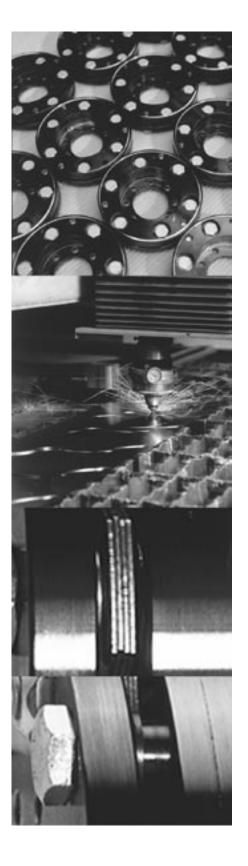
Wirkungsgrad und reduzierter Gefahr eines Lamellenversagens.

Flexible Konstruktion des Zwischenstücks

Aufgrund der einzigartigen Konstruktion des Escodisc-Zwischenstücks (Flansche am Zwischenrohr angeschraubt – siehe Katalogzeichnungen DMU/ DPU) kann seine Länge dem Kundenwunsch entsprechend angepasst werden. Schnelle Lieferung ist möglich (auch für Anwendungen mit großem Abstand zwischen den Wellenenden), und der Lagerbestand des Kunden kann auf ein Minimum reduziert werden.

Geeignet für extreme Temperaturen und korrosionsbeständig

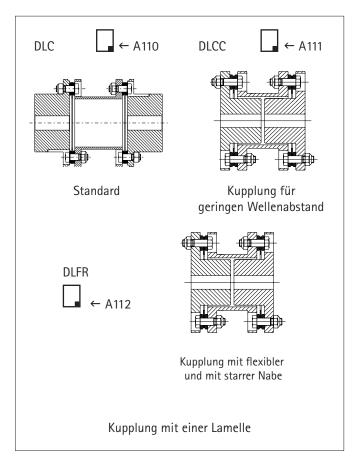
Escodisc-Kupplungen können bei Temperaturen zwischen + 270°C und – 40°C verwendet werden (niedrigere oder höhere Temperaturen auf Anfrage). Dank der Verwendung rostfreier Stahllamellen, des standardmäßigen Dacromet-Schutzes und einer speziellen Oberflächenbehandlung sind die Escodisc-Kupplungen außerdem bestens korrosionsgeschützt.

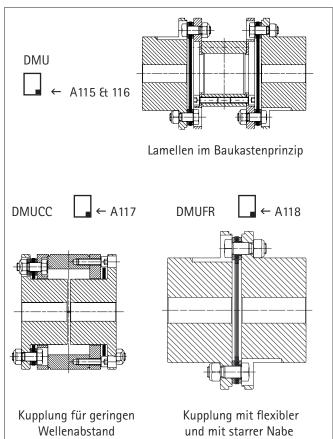

Einfache Montage und Demontage

Zur Kostenersparnis während der Montage- und Demontagephasen wurde die Konstruktion aller Escodisc-Kupplungen optimiert (vorgefertigte Lamellenpakete oder Übertragungseinheiten, Transportschrauben,).

Drehmomentübertragung bei Bruch der Lamellen

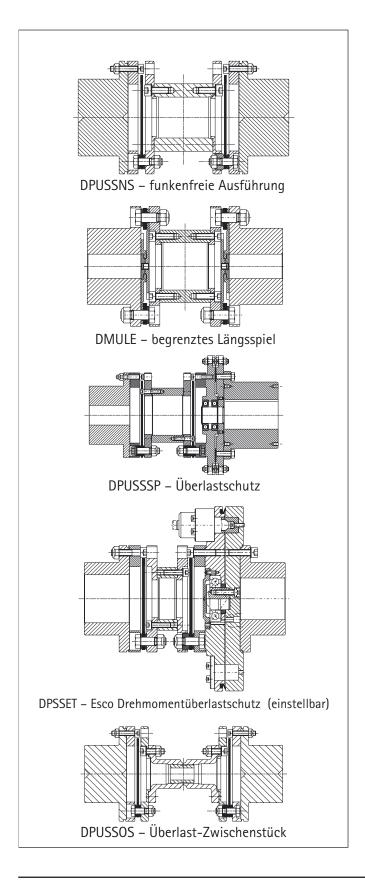
Für den unwahrscheinlichen Fall, dass es zu einem Versagen der Lamellen kommt, sind die Escodisc-Kupplungen so ausgelegt worden, dass die Drehmomentübertragung für eine begrenzte Zeit weiter gewährleistet bleibt (durch Schrauben). Außerdem sorgt dieses System für gute Zentrierung des Zwischenstücks und wirkt als Rücklaufhemmung, so dass optimale Nutzersicherheit gewährleistet werden kann.

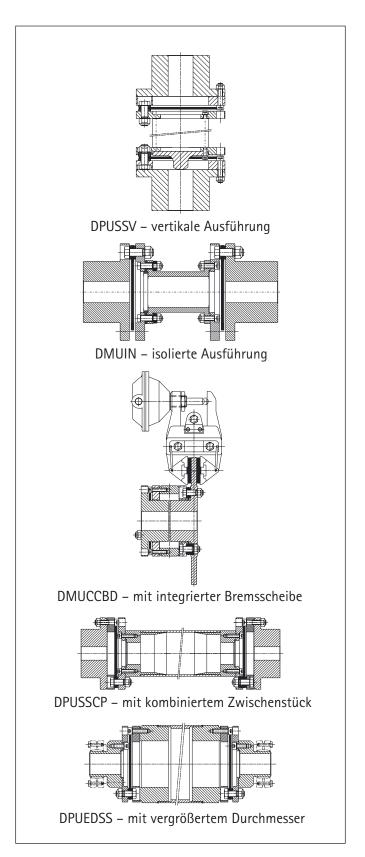

2



Printed in Belgium 03/2003

BAUREIHE DL - DMU - DPU


← ← BAUFORMEN ↓ ↓ ↓ DPUSL ← A121 S Nabe L Nabe ← A121 DPUSS S Nabe S Nabe **DPULL** L Nabe L Nabe


Kupplungen mit vormontierten Lamellenpaketen

BAUREIHE DL - DMU - DPU

ANDERE BAUFORMEN (auf Anfrage)

AUSWAHL

AUSWAHL DER RICHTIGEN KUPPLUNGSGRÖßE

1. Basierend auf den Daten des Einsatzfalles

Eine erste Auswahl kann unter Zugrundelegung des Drehmoments, der Drehzahl, des Abstands zwischen den Wellenenden und der Wellenabmessungen der beiden zu verbindenden Maschinen getroffen werden. Die DLC-Kupplungen sind hinsichtlich des Drehmoments und der Bohrungskapazität eingeschränkt. Daher sind für Einsatzfälle mit mittlerem bis hohem Drehmoment die Baureihen DMU oder DPU zu verwenden. Bei Drehmomenten > 23.100 Nm ist die Baureihe DMU zu bevorzugen. Hohen Drehzahlanforderungen wird mit der Baureihe DPU aufgrund ihres Konzepts bestens entsprochen. Bei kurzen Abständen zwischen den Wellenenden können die Baureihen DLCC oder DMUCC ausgewählt werden, während bei langen Abständen (> 1000 mm), bei denen ein Auswuchten erforderlich ist, Escodisc DMU oder DPU zu verwenden sind. Die nachstehende Tabelle gibt eine Übersicht über die jeweiligen Kupplungseigenschaften.

2. Basierend auf den besonderen Anforderungen des Einsatzfalles

Besondere Anforderungen des Einsatzfalles können ebenfalls für die Auswahl der Escodisc-Baureihe entscheidend sein. Hierzu gehören z.B. Auswuchten, Übereinstimmung mit den API-Spezifikationen, funkenfreie Ausführung, besondere Materialien, Aufbau, verfügbarer Raum etc. Die nachstehende Tabelle gibt eine Übersicht, inwieweit die Baureihen DLC, DMU und DPU den besonderen Anforderungen eines Einsatzfalles entsprechen.

3. Basierend auf wirtschaftlichen Anforderungen

4. Basierend auf dem Wunsch des Kunden nach Standardisierung

	DLC	DLCC	DMU	DMUCC	DPU
Drehmomentkapazität (1)	1600	1600	260000	19800	23100
Bohrungskapazität	105	85	370	170	220
Auswuchtung (2)		Q 2,5		Q 2,5	
kurzer Wellenabstand (< 50 mm)		ja		ja	
langer Wellenabstand (> 1000 mm)			ja		ja
große Nabe					ja
funkenfreie Ausführung				auf Wunsch	Auf Wunsc
hohe Drehzahlen (> 3000 1/min					Auf Wunsc
gemäß API 610			ja		ja
gemäß API 671					Auf Wunsc
isolierte Ausführung	Auf Wunsch		Auf Wunsch		Auf Wunsc
begrenztes Längsspiel			Auf Wunsch		Auf Wunsc
Überlastschutz					Auf Wunsc
Esco Drehmomentüberlastschutz					Auf Wunsc
Überlast-Zwischenstück			Auf Wunsch		Auf Wunsc
vertikale Ausführung					Auf Wunsc

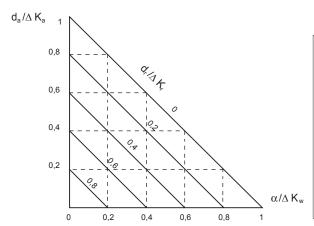
<u>Anmerkungen</u>:

- (1) Die angegebene Drehmomentkapazität entspricht dem Standardbereich. Größere Größen sind auf Anfrage lieferbar.
- (2) Hierbei handelt es sich um den max. AuswuchtGrad. Standardkupplungen sind nicht gewuchtet.

AUSWAHL DER RICHTIGEN KUPPLUNGSGRÖßE

1. Verlagerungskapazität

Escodisc-Kupplungen sind für drei Arten der Verlagerung geeignet:


AXIALVERSATZ: $d_a \text{ mm pro Kupplung}$ $\Delta K_a = \text{max. Axialversatz}$ (siehe Datenblatt)

WINKELVERLAGERUNG: $\alpha \mbox{ Winkel der halben Kupplung: } \\ \alpha = \mbox{max. } (\alpha_1, \, \alpha_2) \\ \Delta K_w = \mbox{max. Winkelverlagerung } \\ \mbox{(siehe Datenblatt)}$

PARALLELVERSATZ: d_r mm Winkel der halben Kupplung: $\Delta K_r =$ max. Winkelverlagerung (siehe Datenblatt) ($\Delta K_r =$ S tg ΔK_w)

Bei mehreren gleichzeitig auftretenden Verlagerungen kann die max. zulässige Verlagerung gemäß untenstehender Grafik ermittelt werden oder mit der Formel:

$$\frac{d_a}{\Delta K_a} + \frac{\alpha}{\Delta K_w} + \frac{d_r}{\Delta K_r} \le 1$$

Beispiel: ESCODISC DMU 65 – 75 Die max. zulässigen Werte betragen gem. Datenblatt: Δ K_a = 2,6 mm; Δ K_w = 0,5°; Δ K_r = 0,8 mm.

Prüfung, ob die tatsächlichen Werte zulässig sind: $d_a = 0.8$ mm; $\alpha = 0.15^{\circ}$ and $d_r = 0.2$ mm

$$\frac{d_a}{\Delta K_a} \, + \, \frac{\alpha}{\Delta K_w} \, + \, \frac{d_r}{\Delta K_r} \, = \frac{0.8}{2.6} \, + \frac{0.15}{0.5} \, + \frac{0.2}{0.8} \quad = 0.85 \, \leq \! 1 \colon 0 \, K$$

Bei der Montage wird jedoch empfohlen, 20% der Gesamtverlagerungskapazität der Kupplung nicht zu überschreiten. Siehe Einbau- und Wartungsanleitung.

2. Drehmomentkapazität und Auswahl

a) Die in der Tabelle angegebenen Drehmomente sind unabhängig von der Verlagerung und der Drehzahl, vorausgesetzt die Summe der Verlagerungen und die sich daraus ergebende Drehzahl übersteigt die in der Tabelle angegebenen Werte nicht.

b) Kupplungsauswahl

Zunächst ist die Größe der Escodisc-Kupplung dem größten Wellendurchmesser entsprechend zu bestimmen. Prüfen Sie nach folgender Formel, ob die gewählte Kupplung die erforderliche Drehmomentkapazität hat:

Das Nenndrehmoment T_n der ausgewählten Kupplung muss gleich oder größer sein als das errechnete Drehmoment. Andernfalls ist eine größere Kupplung zu wählen. Achten Sie darauf, dass das Spitzenmoment den Spitzenwert T_p der gewählten Kupplung nicht überschreitet. Andernfalls ist eine größere Kupplung zu wählen.

Bei Verwendung eines Drehstrommotors ist das zu übertragende Spitzenmoment wie folgt zu errechnen:

$$T_p = 7 \times T_{nm} \times \frac{J_2}{(J_1 + J_2)}$$

 T_{nm} = Nenndrehmoment des Motors (Nm)

 J_1 = Massenträgheitsmoments des Motors (kgm²)

 J_2 = Massentragheitsmoment der angetriebenen Maschine (kgm²)

C. Prüfen Sie, ob die Verbindung Welle/Nabe das Drehmoment überträgt. Im Zweifelsfall wenden Sie sich an Esco.

BAUREIHEN DL - DMU - DPU

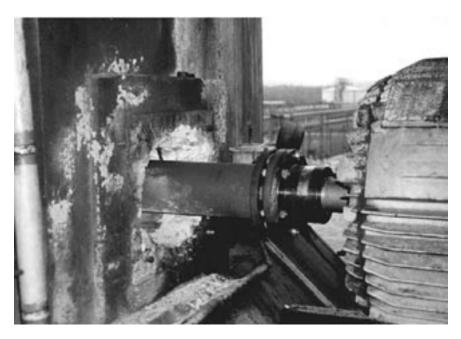
c) Betriebsfaktor F_u

Der Betriebsfaktor hängt von den Maschinen (treibend und angetrieben = F_M) und den Betriebsbedingungen ($F_W \times F_u = F_M \times F_w$) ab.

	treibende Maschine	angetriebene Maschine
$F_M = F_N$	Elektro- und Hydraulikmotoren, Turbinen	siehe Tabelle
$F_M = F_N + 0.4$	Kolbenmotoren mit 4 Zylindern und mehr	
$F_M = F_N + 0.9$	Kolbenmotoren mit 2 bis 3 Zylindern	siehe unten Faktor F


 $F_W = 1$ für gleichmäßige Belastung – $F_W = 1,25$ für Reversierbetrieb oder mehr als 2 Starts pro Minute

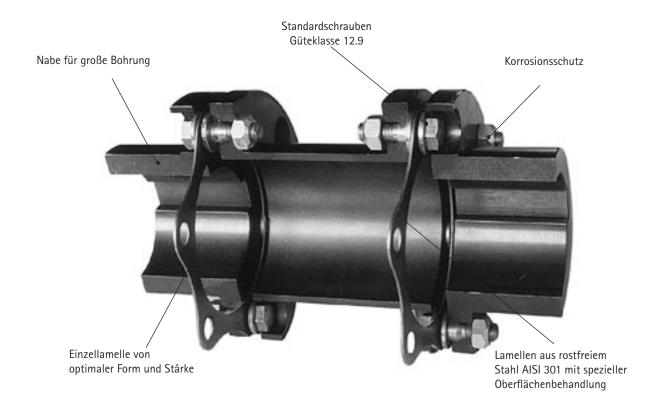
angetriebene Maschine	F _N	angetriebene Maschine	F _N
Zentrifugalpumpen geringe Trägheitsmomente und dünnflüssige Medien hohe Trägheitsmomente* und dickflüssige Medien Turbopumpen Zahnpumpen Turbinen	1 1,75 2,5 1,5 1,25	Arbeitsmaschinen (verschiedene) Wäschereimaschinen Verpackungsmaschinen Papier- und Textilmaschinen Zerkleinerungsmaschinen Holz- und Kunststoffmaschinen	1,75 1,5 2 2 2 1,5
Wasserstrahlpumpen Rührwerke geringe Trägheitsmomente und dünnflüssige Medien hohe Trägheitsmomente* und dickflüssige Medien Gebläse, axial und radial geringe Trägheitsmomente	1,25 1 1,75	Hebeanlagen Förderanlagen Krane Aufzüge Winden Bergbau-, Zement- und Brikettieranlagen	1,75 2 1,5 1,75
hohe Leistung*, Kühlturmlüfter Kompressoren Kolbenkompressoren Turbokompressoren Werkzeugmaschinen Hauptantriebe Hilfsantriebe Generatoren Dauerbetriebty	1,5 2,5 1,75 1	Brecher Mischer (Beton) Brennöfen <u>Metallverarbeitungsanlagen</u> Stranggussanlagen Konverter Bandstahlwalzanlagen Drahtziehanlagen	3 1,75 2 2,5 2,5 2,25 2,25 2


^{*} Wenn $J_1 < 2J_2$ wobei $J_1 = \text{Tr\"{a}gheits}$ moment des Elektromotors und $J_2 = \text{Tr\"{a}gheits}$ moment der angetriebenen Maschine

L	egende der Pictogramme	Anmerkungen für die Baureihen DL – DMU – DPU
Ømax.	max. Bohrung (mm)	
Ømin.	min. Bohrung (mm)	1 Für Passfeder nach ISO R 773
O1m ↓	max. Drehmoment(Nm) Spitzenmoment = 2 x max. Drehmoment	2.1 Max. übertragbares Drehmoment bei $\% \ \Delta \ K_w + \% \ \Delta \ K_a + \% \ \Delta \ K_r \leq 100\%$
/min.max.	max. Drehzahl (1/min)	3 Höhere Drehzahlen auf Anfrage
ΔK_{W} ΔK_{W}	max. Winkelverlagerung (Grad)	3.3 lst abhängig von S 4 Für ungebohrte Naben
ΔK _r S	max. Parallelversatz (mm)	5 Für vorgebohrte Naben 8 Werte für S min. und S max. abhängig von Drehmoment und Drehzahl
JIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	max. Axialversatz (mm)	11 Größeres S nach Rücksprache12 Nach DIN 740
J (WR ²)	Massenträgheitsmoment (kgm²)	13 $\Delta K_r \cong S \times tg \Delta K_w$
	Gewicht (kg)	* Die Tabellenwerte für max. Drehmoment, Drehzahl und Versatz dürfen nicht kumuliert werden. Siehe IM/A100-2, -3, -4.

Was sera uf be reitung san lage

Kühlturm


8

DLC

BAUREIHE DLC

Das wirtschaftliche Einzellamellenkonzept für leichten bis intermittierenden Betrieb Max. Drehmomentleistung : bis 1600 Nm – Bohrung : bis 105 mm

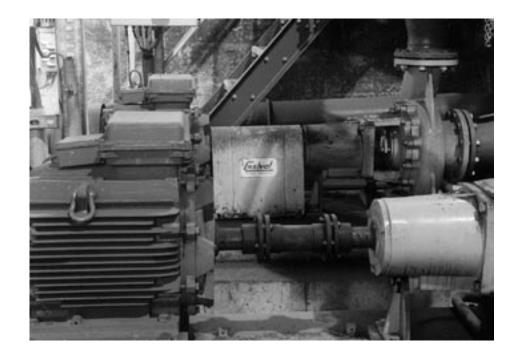
Wirtschaftliche Lösung

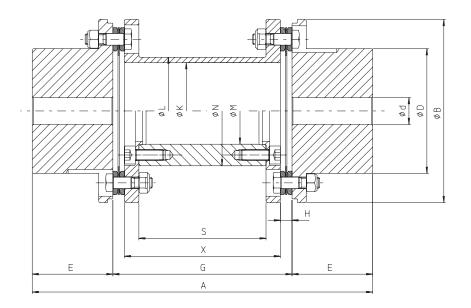
Die vereinfachte Konstruktion und das Einzellamellenkonzept der Escodisc DLC bieten eine äußerst kosteneffektive Lösung bei leichten und intermittierenden Betriebsbedingungen, wo eine wartungsfreie Kupplung gefragt ist.

Einzellamellenkonzept

Dank der finiten Elementenmethode und des standardmäßigen Laserschneidens kann dieses Konzept problemlos bei leichten und mittelschweren Einsatzfällen eingesetzt werden (keine Reibkorrosion, kein Verformen).

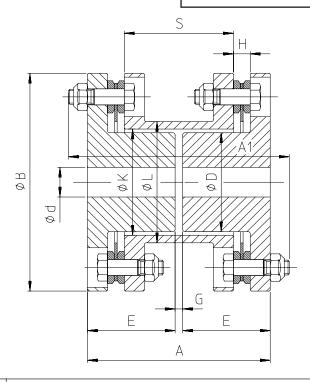
Geringer Wellenabstand


Die Escodisc DLC-Kupplungen sind ebenfalls für geringe Wellenabstände lieferbar (DLCC) und bieten damit dem Anwender eine kompakte Lösung für seinen Einsatzfall. Ein Abstand zwischen den Wellenenden von nur 3 mm kann bei max. Verlagerungskapazität erreicht werden.


BAUREIHE DLC - AUSWAHLTABELLE

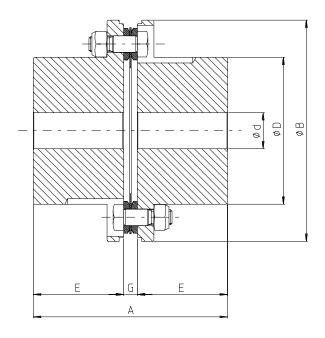
V		Max. Leistung (kW)													Max.	Max.		
Kupplungs-	1	1000 1/min			1500 1/min		1	1800 1/min			3000 1/min			3600 1/min			Drehzahl Bohrung	
größe	SF 1	SF 1,5	SF 2	SF 1	SF 1,5	SF2	(1/min)	(mm)										
DLC 28-28	7	5	4	11	7	5	13	9	7	22	15	11	26	18	13	5800	28	
DLC 38-45	12	8	6	17	12	9	21	14	10	35	23	17	41	28	21	5000	45	
DLC 45-55	21	14	10	31	21	16	38	25	19	63	42	31	75	50	38	5600	55	
DLC 55-65	37	24	18	55	37	27	66	44	33	110	73	55	132	88	66	4600	65	
DLC 65-75	68	45	34	102	68	51	123	82	61	204	136	102	245	163	123	3900	75	
DLC 75-90	105	70	52	157	105	79	188	126	94	314	209	157	377	251	188	3500	90	
DLC 85-105	168	112	84	251	168	126	302	201	151	503	335	251	603	402	302	3000	105	

DLC 28-28 ⇒ 85-105

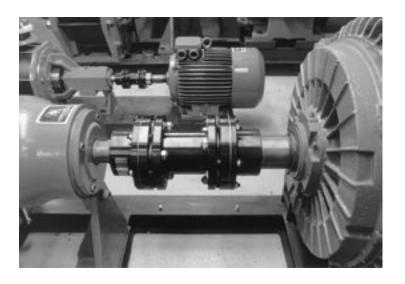


							Type DLC			
		← A1	05	28-28	38-45	45-55	55-65	65-75	75-90	85-105
// W	Ø max.			28	45	55	65	75	90	105
	Ø min.	1	mm	0	0	0	0	25	32	38
Ε	Tn			70	110	200	350	650	1000	1600
0 1m ↓	Тр	2.1	Nm	125	190	350	620	1150	1750	2800
(X)/min.m	nax.		tr/min omw/min rpm min ⁻¹	5800	5000	5600	4600	3900	3500	3000
ΔK _W ΔK _W		12	degré graad degree Grad	2x0,75	2x0,75	2x0,5	2x0,5	2x0,5	2x0,5	2x0,5
		12	mm: ±	1,2	1,8	1,2	2 1,4		2	2,4
ΔK _r S-	-\	12 13	mm: ±	0,8	0,8	0,8	0,8	0,8	0,8	1,1
- (W	J R ²)	4	kgm²	0,001	0,002	0,004	0,010	0,022	0,048	0,101
\$		5	kg	1,6	2,6	4,2	7,0	10,6	16,9	26,9
	А	11	mm	156	170	190	200	220	240	310
	В		mm	76	88	102	123	147	166	192
	D		mm	40	58,5	69,5	82	97,5	113	132
	Е		mm	28	35	45	50	60	70	85
	G	11	mm	100	100	100	100	100	100	140
mm: ±	Н		mm	6,5	6,7	6,5	7	9	10	13
	K		mm	30	43	54	67	81	96	112
	L		mm	36	49	60	74	88	104	122
	М		mm		21	37	48	54	65	76
	N		mm		41	61	72	86	98	116
S		11	mm	71	70,6	71	64	60	48	80
	Х		mm	87	86,6	87	86	82	80	114

DLCC 28-20 ⇒ 85-85



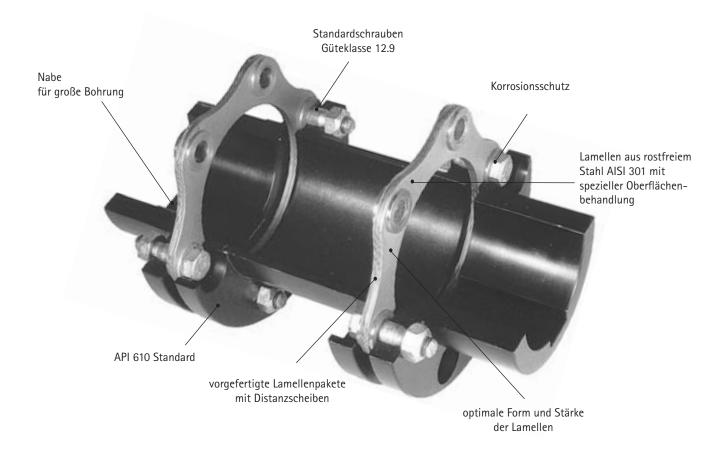
	٦.						Type DLCC			
	y ←	A105		28-20	38-28	45-40	55-50	65-60	75-70	85-85
The same of the sa	Ø max.			20	28	40	50	60	70	85
	Ø min.	1	mm	0	0	0	0	25	32	38
	Tn			70	110	200	350	650	1000	1600
O 1m \(\frac{\xi}{2}	Тр	2.1	Nm	125	190	350	620	1150	1750	2800
×/min.r	nax.		tr/min omw/min rpm min-1	5800	5000	5600	4600	3900	3500	3000
ΔK_{W} ΔK_{W}		12	degré graad degree Grad	2x0,75	2x0,75	2x0,5	2x0,5	2x0,5	2x0,5	2x0,5
JL L → AKa		12	mm: ±	1,2	1,8	1,2	1,4	1,6	2	2,4
ΔK _r S-	<u> </u>	12	mm: ± 13	0,8	8,0	8,0	0,8	0,8	0,8	1,1
- (W	J 'R ²)	4	kgm²	0,0008	0,0016	0,003	0,009	0,018	0,041	0,084
\$		5	kg	1,4	2,05	3,2	5,8	8,5	13,5	22,1
	А	11	mm	116 (66)	116 (73)	116 (93)	122 (103)	122	132	174
	В		mm	76	88	102	123	147	166	192
	D		mm	29	40	52	65	78	92	108
	Е		mm	28	35	45	50	59	64	85
mm ±	G	11	mm	60 (10)	46 (3)	26 (3)	22 (3)	4	4	4
<u>r</u>	Н		mm	6,5	6,7	6,5	7	9	10	13
	K		mm	30	43	54	67	81	96	112
	L		mm	36	49	60	74	88	104	122
	S	11	mm	87 (37)	86,6 (43,6)	87 (64)	86 (67)	82	80	114
A1			mm	133 (83)	133 (90)	133 (110)	142 (123)	148	162	210


DLFR 28-28 ⇒ 85-105

							Type DLFR			
		←A10)5	28-28	38-45	45-55	55-65	65-75	75-90	85-105
The d	Ø max.			28	45	55	65	75	90	105
	Ø min.	1	mm	0	0	0	0	25	32	38
Ē	Tn			70	110	200	350	650	1000	1600
O1m ↓	Тр	2.1	Nm	125	190	350	620	1150	1750	2800
/min.max.			tr/min omw/min rpm min ⁻¹	5800	5000	5600	4600	3900	3500	3000
ΔK _w		12	degré graad degree Grad	0,75	0,75	0,5	0,5	0,5	0,5	0,5
	ì	12	mm: ±	0,6	0,9	0,6	0,7	0,8	1	1,2
ΔKr	-\	12	mm: ±	0	0	0	0	0	0	0
- (W	J R ²)	4	kgm²	0,0005	0,0012	0,0027	0,007	0,015	0,032	0,068
		5	kg	1	1,9	3,2	5,3	8,3	13,1	21
	Α		mm	62,5	76,7	96,5	107	129	150	183
	В		mm	76	88	102	123	147	166	192
mm ±	D		mm	40	58,5	69,5	82	97,5	113	132
	Е		mm	28	35	45	50	60	70	85
G			mm	6,5	6,7	6,5	7	9	10	13

Pumpenantrieb

 $\label{lem:proposed_prop_prop_prop} \mbox{Pr\"{u}fstandsantrieb mit Drehmomentbegrenzer FET}$


14

BAUREIHE DMU

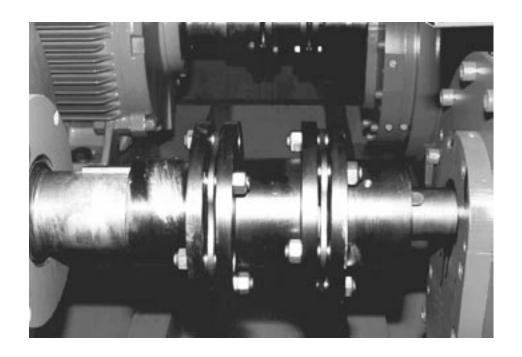
Die Allzwecklösung bei hohem Drehmoment und großem Versatz Max. Drehmomentleistung : bis 260 000 Nm – Bohrung : bis 370 mm

Allzweckkonstruktion

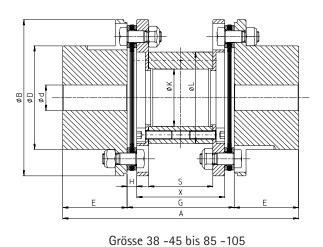
Wegen der großen Drehmoment-, Bohrungs- und Verlagerungskapazität der Escodisc-Baureihe DMU, ihrer hohen Eigenstabilität (AGMA-Klasse 9) bis zur Größe 85 und der Tatsache, dass sie den API-Normen 610 entspricht, ist diese Kupplung für viele Einsatzfälle bis 260 000 Nm (auf Anfrage auch größer) die ideale Lösung.

Lamellenpakete im Baukastenprinzip

Die Lamellenpakete der DMU-Kupplungen bestehen aus einer optimalen Lamellenanzahl oder Einzelgliedern (bei Kupplungen der Größe 190 und höher). Diese sind werksseitig für nachträglichen Einbau vorgefertigt. Um Reibkorrosion auszuschließen, werden Stahlscheiben zwischen den Lamellen verwendet.


Geringer Wellenabstand

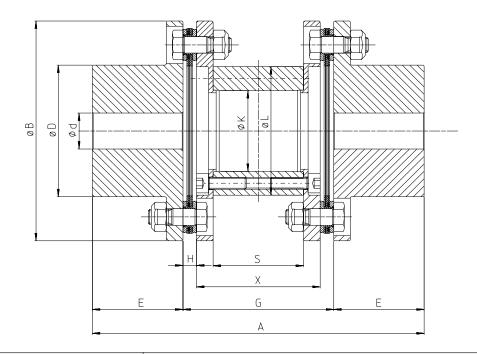
Die Escodisc DMU-Kupplungen sind ebenfalls für geringe Wellenabstände lieferbar (DMUCC). Durch die große Bohrungs- und Drehmomentkapazität wird eine ideale wartungsfreie Alternative für Zahnkupplungen mit geringem Wellenabstand und elastische Kupplungen geboten. Der Austausch von Zahn- und elastischen Kupplungen ist ohne Veränderung an der existierenden Anlage möglich. Darüber hinaus ist aufgrund des geteilten Zwischenstücks die Trennung von zwei Maschinen und der Austausch des Lamellenpakets möglich, ohne dass die verbundenen Maschinen axial versetzt werden müssen.


BAUREIHE DMU - AUSWAHLTABELLE

							Max	. Leistun	g (kW)							Max.	Max
Kupplungs-	10	00 1/mir	1	1500 1/min			1	1800 1/min			3000 1/min			600 1/m	in	Drehzahl	Bohrung
größe	SF 1	SF 1,5	SF 2	SF 1	SF 1,5	SF2	SF 1	SF 1,5	SF2	SF 1	SF 1,5	SF2	SF 1	SF 1,5	SF2	(Rpm)	(mm)
DMU 38-45	20	13	10	30	20	15	36	24	18	60	40	30	72	48	36	16000	45
DMU 45-55	35	23	17	52	35	26	62	41	31	104	69	52	124	83	62	13600	55
DMU 55-65	79	52	39	118	79	59	141	94	71	236	157	118	283	188	141	12000	65
DMU 65-75	139	93	70	209	139	104	251	167	125	418	279	209	501	334	251	10000	75
DMU 75-90	230	154	115	346	230	173	415	276	207	691	461	346	829	553	415	8600	90
DMU 85-105	366	244	183	550	366	275	660	440	330	1099	733	550	1319	880	660	7200	105
DMU 95-105	586	391	293	880	586	440	1056	704	528	1759	1173	880	2111	1407	1056	6400	105
DMU 110-120	838	558	419	1257	838	628	1508	1005	754	2513	1675	1257	3016	2010	1508	5600	120
DMU 125-135	1141	761	571	1712	1141	856	2054	1370	1027	3424	2283	1712	4109	2739	2054	5000	135
DMU 140-160	1487	991	744	2231	1487	1115	2677	1784	1338	4461	2974	2231	5353	3569	2677	4600	160
DMU 160-185	2074	1383	1037	3109	2073	1554	3735	2490	1868	6226	4151	3113	11245	7497	5623	4000	185

DMU 38-45 ⇒ 160-185

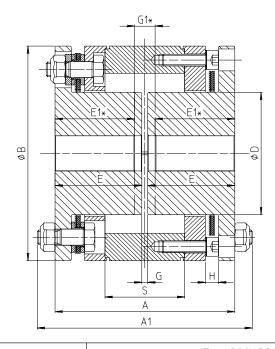
B G E A

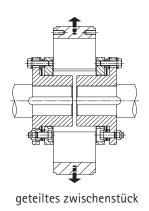

Grösse 95 -105 bis 160 -185

	←A105							Ту	pe DMU					
		-A105	5	38-45	45-55	55-65	65-75	75-90	85-105	95-105	110-120	125-135	140-160	160-185
The second	max.			45	55	65	75	90	105	105	120	135	160	185
) min.	1	mm	0	0	0	25	32	38	45	55	65	65	80
Ę	Tn			190	330	750	1330	2200	3500	5600	8000	10900	14200	19800
O1m ↓	Тр	2.1	Nm	290	500	1120	2000	3320	5200	8400	12000	16400	21200	29600
*			tr/min omw/min	8000	6800	6000	5000	4300	3600	3200	2800	2500	2300	2000
(X)/min.m	ax.	3	rpm min ⁻¹	16000*	13600*	12000*	10000*	8600*	7200*	6400*	5600*	5000*	4600*	4000*
ΔK _W	X _{Kw}	12	degré graad degree Grad	2x0,75	2x0,5	2x0,5	2x0,5	2x0,5	2x0,5	2x0,5	2x0,5	2x0,5	2x0,5	2x0,5
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	F	12	mm: ±	2,4	2	2,4	2,6	3	4	4	4,4	5,2	6,6	6,8
ΔKr	<u>-</u>	12	mm: ±	8,0	0,8	0,8	0,8	1,1	1,1	1,1	1,4	1,4	2	2
- (WF	₹ ²)	4	kgm²	0,0015	0,004	0,008	0,018	0,04	0,084	0,136	0,262	0,434	0,779	1,436
		5	kg	3,08	4,98	8	12,05	20,12	30,65	39,5	59,8	79,04	115,5	163,6
	Α	11	mm	170	190	200	220	280	310	330	400	430	530	570
	В		mm	88	102	123	147	166	192	224	244	273	303	340
	D		mm	58,5	69,5	82	97,5	113	132	133	154	175	196	228
mm ±	Е		mm	35	45	50	60	70	85	95	110	125	140	160
	G	11•	mm	100	100	100	100	140	140	140	180	180	250	250
	Н		mm	6,7	6,5	7	9	10	13	14	15,5	19	20	20
K			mm	21	37	48	54	65	76	94	108	123	143	165
L			mm	41	61	72	86	98	116	134	156	171	191	221
S		11	mm	70,6	71	64	60	88	80	76	103	96	160	154
	Х		mm	86,6	87	86	82	120	114	112	149	142	210	210

^{*} Auswuchtung erforderlich — • Andere Längen Lieferbar — Wenden Sie sich an Esco.

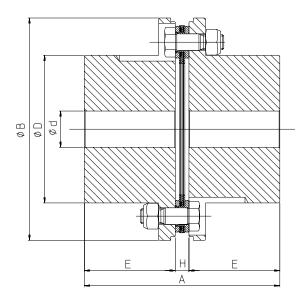
DMU 190-220 ⇒ 360-370





						Type DMU				
	4	-A105	i	190-220	220-255	250-290	280-320	320-360	360-370	
Killy a	Ø max.			220	255	290	320	360	370	
	Ø min.	1	mm	90	120	150	180	200	200	
E N	Tn			30700	53000	93000	120000	167000	260000	
O1m ↓	Тр	2.1	Nm	46000	80000	140000	180000	250000	390000	
(X)/min.m	nax.	3	tr/min omw/min rpm min ⁻¹	1800	1500 1300 1200		1050	900		
$\frac{1}{\Delta K_{W}} \cdot \frac{1}{\Delta K_{W}}$		12	degré graad degree Grad	2x0,33	2x0,33	2x0,25 2x0,25		2x0,2	2x0,2	
JL JL → ΔKa		12	mm: ±	5	6,6	7,6	8	9	6	
ΔKr	-	12	mm: ±	1,4	1,6	1,3	1,4	1,3	1,4	
- (W	J R ²)	4	kgm²	3	7,3	11,6	23	36	72	
\$		5	kg	222	358	418	680	916	1400	
	Α	11	mm	630	720	800	900	1020	1120	
	В		mm	383	445	515	554	604	704	
	D		mm	266	320	350	392	431	504	
mm ±	Е		mm	190	220	250	280	320	360	
_	G		mm	250	280	300	340	380	400	
	Н		mm	22	24,6	38	41	44,9	34	
K			mm	204	254	292	314	330	432	
	L		mm	268	318	364	394	426	528	
	S		mm	158	174,8	160	186	217,2	252	
	Х		mm	206	230,8	224	258	290,2	332	

DMUCC 45-45 ⇒ 160-170

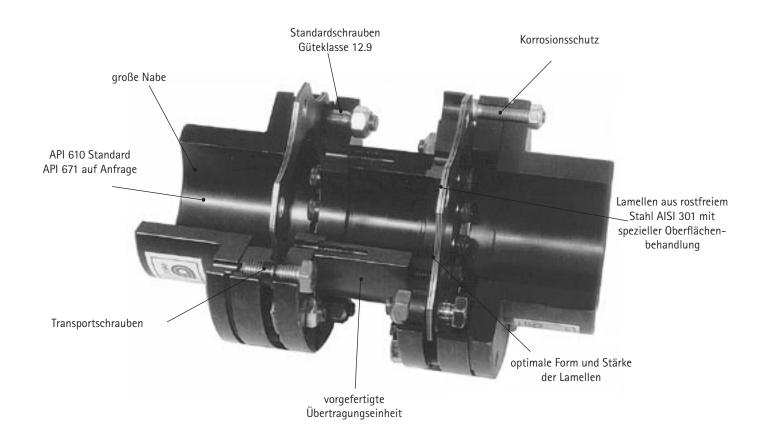


←A105				Type DMUCC											
				45-45	55-50	65-65	75-75	85-90	95-95	110-115	125-130	140-140	160-170		
A de la constant de l	Ø max.			45	50	65	75	90	95	115	130	140	170		
/ 》/////	Ø min.	1	mm	0	0	25	32	38	45	55	65	65	80		
E	Tn			330	750	1330	2200	3500	5600	8000	10900	14200	19800		
0 1m ↓	Тр	2.1	Nm	500	1120	2000	3320	5200	8400	12000	16400	21200	29600		
/min.max.		3	tr/min omw/min rpm min ⁻¹	6800	6000	5000	4300	3600	3200	2800	2500	2300	2000		
ΔK_{W}		12	degré graad degree Grad	2x0,5	2x0,5	2x0,5	2x0,5	2x0,5	2X0,5	2X0,5	2X0,5	2X0,5	2X0,5		
ΔKa		12	mm: ±	2	2,4	2,6	3	4	4	4,4	5,2	6,6	6,8		
ΔKr	<u> </u>	12	mm: ±	0,8	0,8	0,8	0,8	1,1	1,1	1,4	1,4	2	2		
- J (WF	₹ ²)	4	kgm²	0,006	0,014	0,032	0,062	0,135	0,272	0,459	0,8	1,36	2,5		
\$	<u> </u>		kg	4,52	7,57	12,01	17,42	29,08	42,7	61,2	84,3	118	170		
	Α	11	mm	93	103	122	132	174	194	226	256	286	328		
	A1	11	mm	108	123	146	160	204	230	269	302	336	382		
	В		mm	102	123	147	166	192	224	244	273	303	340		
mm ±	D		mm	59	70	84	97	112	126	151	166	182	213		
	Е		mm	45	50	59	64	85	95	110	125	140	160		
	E1*		mm	43	47,5	56	60,5	80	89,5	104,8	118	132,5	153,5		
	G	11	mm	3	3	4	4	4	4	6	6	6	8		
	G1*		mm	7	8	10	11	14	15	16,5	20	21	21		
	Н		mm	6,5	7	9	10	13	14	15,5	19	20	20		
	S		mm	46	43	54	46	76	88	98	117	135	167		

 $^{^{\}star}$ E1 und G1 sind Mindestabmessungen, um Ausbau des Lamellen ohne Verschieben dor Maschinen z.u. os möglichen

DMUFR 38-45 ⇒ 160-185

				Type DMUFR												
	←A105		38-45	45-55	55-65	65-75	75-90	85-105	95-105	110-120	125-135	140-160	160-185			
(d _ 0	max.			45	55	65	75	90	105	105	120	135	160	185		
	min.	1	mm	0	0	0	25	32	38	45	55	65	65	80		
E Z	Tn			190	330	750	1330	2200	3500	5600	8000	10900	14200	19800		
O1m √	Тр	2.1	Nm	290	500	1120	2000	3320	5200	8400	12000	16400	21200	29600		
<u>~</u>			tr/min omw/min	8000	6800	6000	5000	4300	3600	3200	2800	2500	2300	2000		
/min.m	ax.	3	rpm min ⁻¹	16000*	13600*	12000*	10000*	8600*	7200*	6400*	5600*	5000*	4600*	4000*		
ΔK _W	K _w	12	degré graad degree Grad	0,75	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5		
⊒IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	F	12	mm: ±	1,2	1	1,2	1,3	1,5	2	2	2,2	2,6	3,3	3,4		
ΔK _r s	<u>-</u>	12	mm: ±	0	0	0	0	0	0	0	0	0	0	0		
- J (WF	R ²)	4	kgm²	0,001	0,003	0,007	0,015	0,032	0,0683	0,1095	0,2035	0,3493	0,601	1,136		
\$		5	kg	1,91	3,23	5,31	8,3	13,15	21,13	26,21	38,94	54,3	77,35	113,6		
	Α	11	mm	76,7	96,5	107	129	150	183	204	235,5	269	300	340		
	В		mm	88	102	123	147	166	192	224	244	273	303	340		
mm ±	D		mm	58,5	69,5	82	97,5	113	132	133	154	175	196	228		
	Е		mm	35	45	50	60	70	85	95	110	125	140	160		
	Н		mm	6,7	6,5	7	9	10	13	14	15,5	19	20	20		


^{*} Auswuchtung erforderlich

DPU

BAUREIHE DPU

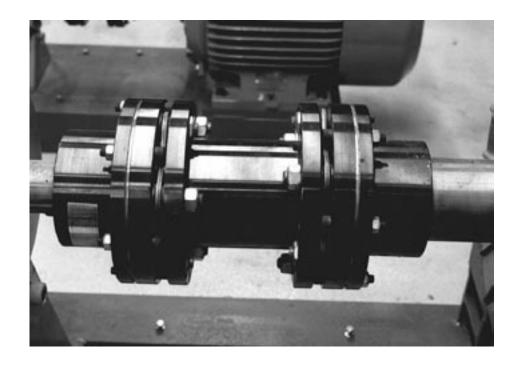
Die einfache Lösung für hohes Drehmoment/hohe Verlagerung Max. Drehmomentleistung : bis 23 100 Nm – Bohrung : bis 220 mm

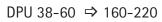
Einfache Montage und Demontage

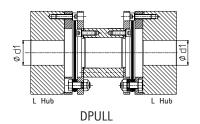
Transportschrauben und werksseitig vorgefertigte Übertragungseinheiten an den Escodisc DPU-Kupplungen erlauben hohe Drehmoment- und Verlagerungskapazität sowie einfache Montage. Im Durchschnitt kann der Anwender der DPU-Kupplungen mit einer 50%igen Senkung der Ein- und Ausbaukosten rechnen. Außerdem reduziert die vorgefertigte Übertragungseinheit das Risiko eines Montagefehlers auf ein absolutes Minimum. Das Resultat ist ein zuverlässiger Betrieb sowie lange Lebensdauer der Kupplung.

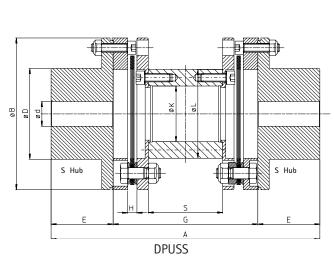
Einsatzfälle mit hohen Drehzahlen und großem Wellenabstand

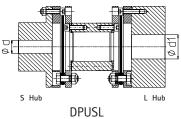
Aufgrund ihrer Konzeption (Zentrierung) und des hohen Fertigungsstandards sind die DPU-Kupplungen ideal für Einsatzfälle mit mittleren und hohen Drehzahlen, die nur wenig oder gar nicht verändert werden. Wegen der exakten Zentrierung der Übertragungseinheit können diese Kupplungen dort eingesetzt werden, wo große Wellenabstände erforderlich sind (z.B. bei Kühltürmen). Eine Anpassung an die API-Norm 671 ist möglich.


Große Bohrung


Die große Nabenausführung (L-Nabe) der Escodic-Baureihe DPU lässt eine Auswahl unabhängig von den Wellenabmessungen zu. Dadurch kann im Vergleich zu den DLC- und DMU-Baureihen in vielen Fällen eine kleinere Größe gewählt werden.

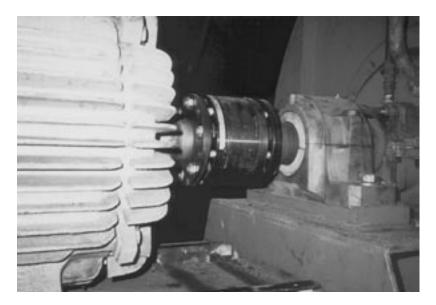

BAUREIHE DPU - AUSWAHLTABELLE

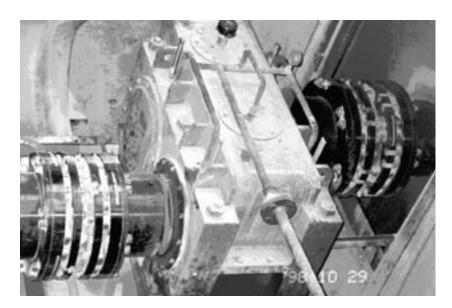

Kupplungs- größe		Max. Leistung (kW)															Max.	Bore
	1000 1/min			1500 1/min			1800 1/min			3000 1/min			3600 1/min			Drehzahl	S-Nabe	L-Nabe
	SF 1	SF 1,5	SF 2	SF 1	SF 1,5	SF2	(1/min)	(mm)	(mm)									
DPU 38-60	20	13	10	30	20	15	36	24	18	60	40	30	72	48	36	24000	45	60
DPU 45-70	35	23	17	52	35	26	62	41	31	104	69	52	124	83	62	20400	55	70
DPU 55-80	79	52	39	118	79	59	141	94	71	236	157	118	283	188	141	18000	65	80
DPU 65-100	139	93	70	209	139	104	251	167	125	418	279	209	501	334	251	15000	75	100
DPU 75-110	230	154	115	346	230	173	415	276	207	691	461	346	829	553	415	12900	90	110
DPU 85-130	366	244	183	550	366	275	660	440	330	1099	733	550	1319	880	660	10800	105	130
DPU 95-145	696	464	348	1044	696	522	1253	836	627	2089	1393	1044	2507	1671	1253	9600	105	145
DPU 110-160	979	653	490	1469	979	734	1762	1175	881	2937	1958	1469	3525	2350	1762	8400	120	160
DPU 125-180	1330	887	665	1995	1330	997	2394	1596	1197	3990	2660	1995	4887	3192	2394	7500	135	180
DPU 140-200	1738	1159	869	2607	1738	1304	3129	2086	1564	5215	3476	2607	6258	4172	3129	6900	160	200
DPU 160-220	2149	1613	1075	3626	2418	1813	4358	2906	2179	7624	4843	3812	8719	5811	4359	6000	185	220



			Type DPU											
	← A	105		38-60	45-70	55-80	65-100	75-110	85-130	95-145	110-160	125-180	140-200	160-220
	max.			45	55	65	75	90	105	105	120	135	160	185
S Hub	min.	1	mm	0	0	0	25	32	38	45	55	65	65	80
K di	max.			60	70	80	100	110	130	145	160	180	200	220
L Hub) min.	1	mm	0	0	0	25	32	38	45	55	65	65	80
E	Tn			190	330	750	1330	2200	3500	6650	9350	12700	16600	23100
O 1m √	Тр	2.1	Nm	290	500	1120	2000	3320	5200	10000	14000	19100	24900	34650
<u> </u>			tr/min omw/min	8000	6800	6000	5000	4300	3600	3200	2800	2500	2300	2000
/min.m	ax.	3	rpm min ⁻¹	24000*	20400*	18000*	15000*	12900*	10800*	9600*	8400*	7500*	6900*	6000*
ΔK _W	Δĸ _w	12	degré graad degree Grad	2x0,75	2x0,5	2x0,5	2x0,5	2x0,5	2x0,5	2x0,33	2x0,33	2x0,33	2x0,33	2x0,33
_lL → ΔK _a	Ŀ	12	mm: ±	2,4	2	2,6	2,8	3,2	4	2,5	2,8	2,6	3	3,4
ΔKr	- ↓	12 13	mm: ±	0,6	0,6	0,6	0,9	0,8	1,1	1	1,4	1,4	1,4	1,4
- (WF	l ∃²) •	4	kgm²	0,003	0,0057	0,015	0,033	0,07	0,145	0,259	0,475	0,775	1,3	2,39
\$		5	kg	3,54	5,49	9,07	14,8	22,8	36,35	47	71,7	94,2	128	179
	Α	11	mm	170	190	200	260	280	350	370	470	500	530	570
	В		mm	88	102	123	147	166	192	224	244	273	303	340
	D		mm	58,5	69,5	82	97,5	113	132	133	154	175	196	228
	Е		mm	35	45	50	60	70	85	95	110	125	140	160
mm ±	G	11	mm	100	100	100	140	140	180	180	250	250	250	250
111111 <u>T</u>	Н		mm	7,1	6,5	7	9	10	13	14	15,5	19	20	20
	K		mm	21	37	48	54	65	76	94	108	123	143	165
	L		mm	41	61	72	86	98	116	134	156	171	191	221
	S	11	mm	51,8	53	40	72	54	82	74	122	111	99	89
				4 Schrauben <		6 S	chrauben		>	<	8 Schrau	uben		>

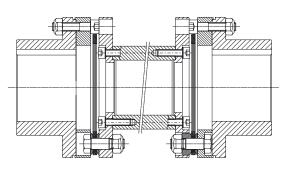
^{*}Auswuchtang erforderlich – Wenden Sie sich an Esco – • Für DPUSS



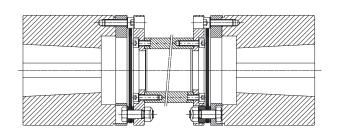

VERGLEICHSTABELLE

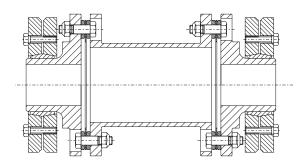
Drehmoment (Nm)	Escodisc DPU	Flender ARH	John Crane Flexibox Metastream TSKS	Jaure Lamidisc DO-6	Wellman Bibby Euroflex DJ	Kopflex KD2	Rexnord Thomas Baureihe 71	
100			0013				150	
	38-60	96-6			62	053	175	
250	45-75		- 0033	110-6	82	103	225	
		120-6						
500	55-80		0075		100	153	300	
750		142-6		132-6	102			
1000	65-100		0135					
		162-6			103	203	350	
1500	75-110		0230	158-6	122		-	
2000	75-110	190-6	0230		123	253	375	
	85-130		0350	185-6	142		412	
3000	05-130	214-6	0350		143	303	462	
	-	230-6	0500	202-6		-		
5000	95-145	230-0		228-6	162	353	512	
		245-6	0740	220-0	163			
7500 —	110-160	275-6	0930	255-6	192	403	562	
10000			_				600	
	125-180	310-6	1400	278-6	193	453	712	
15000	140-200	345-6		302-6	232		800	

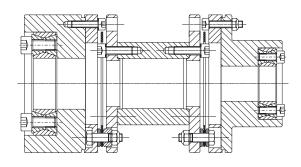
Gebläse

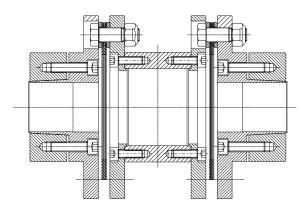


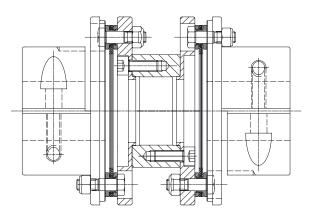
Zementmühle


Printed in Belgium 03/2003 25


ESCODISC - WELLENVERBINDUNGEN


zylindrische Bohrung und Nut (Esco verwendet H7 als Standardbohrung und Passfeder gem. DIN 6885/1)


konische Bohrung

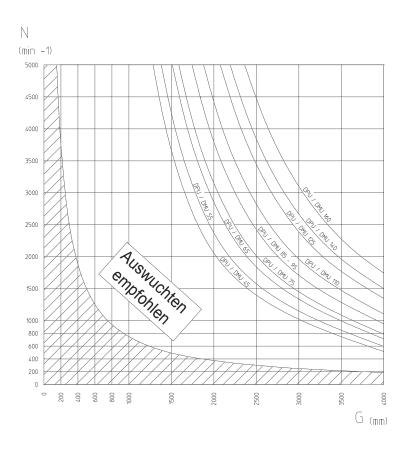

externe Spannvorrichtung

interne Spannvorrichtung

Klemmnaben

geteilte Klemmnaben

Für weitere Informationen zu den genannten Wellenverbindungen wenden Sie sich an Esco.


AUSWUCHTEN DER ESCODISC - KUPPLUNGEN

1. Wann ist Auswuchten erforderlich?

Ob das Auswuchten einer Kupplung tatsächlich erforderlich ist, hängt u.a. von folgenden Faktoren ab:

- Herstellungsqualität der Kupplung (natürliche Eigenstabilität)
- Drehzahl der Anwendung
- Kupplungsmasse (im Verhältnis zur Masse der Maschinenrotoren)
- Abstand zwischen den Wellenenden
- Empfindlichkeit des Systems.

Aufgrund der hohen Herstellungsqualität haben die Escodisc-Kupplungen eine hohe natürliche Eigenstabilität und erfordern im allgemeinen kein zusätzliches Auswuchten bei Einsatzfällen mit normalen Drehzahlen. Bis zur Größe 95 haben die Escodisc-Kupplungen DLC, DMU und DPU bei 1500 1/min eine min. Auswuchtqualität von Q 6.3. Bei den größeren Größen ist Q 6.3 bis zu 1000 1/min ohne zusätzliches Auswuchten garantiert. Der nachstehender Grafik ist zu entnehmen, wann zusätzliches Auswuchten je nach Drehzahl und Abstand zwischen den Wellenenden erforderlich ist. Darüber hinaus gibt die Grafik je nach Kupplungsgröße die Limitdaten für Einsatzfälle mit hohen Drehzahlen und großen Abständen zwischen den Wellenenden an. Bei Überschreitung dieser Limitdaten wenden Sie sich an Esco. Für Anwendungen, bei denen ein zusätzliches Auswuchten erforderlich ist, sind die DLC-Kupplungen nicht geeignet.

2. Auswuchtvorgang

Esco führt je nach Einsatzfall und auf besonders Verlangen des Kunden bei Standardkupplungen die Auswuchtung der Komponenten bis Q6.3 oder Q2.5 durch (Q1 ist erreichbar, wird jedoch für Standardkupplungen nicht empfohlen) und bei Einsatzfällen mit hohen Drehzahlen zusätzlich ein Auswuchten der Komponentengruppe. Das Auswuchten erfolgt vor dem Fräsen der Nut (falls vorhanden) in der Kupplung. Andere Auswuchtoptionen sind auf Anfrage möglich und sind bei Auftragserteilung zu spezifizieren.

Anmerkung

Bei den DMU-Kupplungen ist nur ein Auswuchten der Komponenten möglich.

REFERENZEN

ESCODISC REFERENZEN

Seit 1986 werden Escodisc Standard- und Spezialkupplungen in den verschiedensten Industriebereichen zur vollen Kundenzufriedenheit verwendet, z.B. in der chemischen, petrochemischen, Pappe und Papier-, Druck-, Textil-, Stahl, Zement- und der allgemeinen Maschinenbauindustrie.

Die Einsatzfelder sind sehr unterschiedlich, angefangen bei Pumpen, Kompressoren, Gebläsen, Turbinen für Wasseraufbereitungsanlagen, Bearbeitungszentren bis hin zu Prüfständen für Formel-1-Fahrzeuge...

Aufgrund dieser Vielzahl konnte esco ein hohes Niveau an Sachkenntnis und Wissen erreichen zum Vorteil unserer Kunden.

ABB Lumus Global Belgian Refining Cooporation **BP Amoco Chemicals** Cockerill Sambre Corus Steel **Dow Chemicals** Fina Refinery Flowserve Corporation Howden KSB PumpenPasaban Pompes d'Ensival Shell International Siam Cement Solvay Stora Cell **THY Marcinelle** Valmet

ANDERE ESCO - KUPPLUNGEN

Escogear CST / CST...M

Escogear FST

Escodisc DLC / DMU / DPU

Escogear NST

esco

Escoflex A-R-S-T Esconyl A-B-C

Escorail FTRN /FTRNO

Escospeed DHSU - GHS

Esco Couplings N.V.

Kouterveld - Culliganlaan, 3 B - 1831 Diegem (Brussels) (tel) + 32 02 715 65 60 (fax) + 32 02 720 83 62 - 02 721 28 27 e-mail: info@esco-couplings.be web site: www.escocoupling.com

Eugen Schmidt und Co Getriebe und Antriebselemente GmbH

Biberweg 10 D - 53842 Troisdorf (tel) + 49 (02241) 48070 (fax) + 49 (02241) 480710

e-mail: esco-antriebstechnik@t-online.de web site: www.esco-antriebstechnik.de

Esco Aandrijvingen B.V.

Ondernemingsweg, 19 - P.B. 349 NL - 2404 HM Alphen A/D Rijn (tel) + 31 (0) 172 / 42 33 33 (fax) + 31 (0) 172 / 42 33 42 e-mail: info@esco-aandrijvingen.nl web site: www.esco-aandrijvingen.nl

Esco Transmissions S.A

Z.I. 34, rue Ferme Saint-Ladre Saint Witz F - 95471 Fosses Cedex (tel) + 33 (1) 34 31 95 95 (fax) + 33 (1) 34 31 95 99 e-mail: info@esco-transmissions.fr web site: www.esco-transmissions.fr